Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose.
نویسندگان
چکیده
Inspired by the nacre, we demonstrated the integrated ternary artificial nacre nanocomposites through synergistic toughening of graphene oxide (GO) and nanofibrillar cellulose (NFC). In addition, the covalent bonding was introduced between adjacent GO nanosheets. The synergistic toughening effects from building blocks of one-dimensional NFC and two-dimensional GO, interface interactions of hydrogen and covalent bonding together result in the integrated mechanical properties including high tensile strength, toughness, and fatigue life as well as high electrical conductivity. These extraordinary properties of the ternary synthetic nacre nanocomposites allow the support for advances in diverse strategic fields including stretchable electronics, transportation, and energy. Such bioinspired strategy also provides a new insight in designing novel multifunctional nanocomposites.
منابع مشابه
Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.
With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a "gold standard" for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile str...
متن کاملSynergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre.
Inspired by the layered aragonite platelet/nanofibrillar chitin/protein ternary structure and integration of extraordinary strength and toughness of natural nacre, artificial nacre based on clay platelet/nanofibrillar cellulose/poly(vinyl alcohol) is constructed through an evaporation-induced self-assembly technique. The synergistic toughening effect from clay platelets and nanofibrillar cellul...
متن کاملNacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites.
Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness o...
متن کاملSuper-tough artificial nacre based on graphene oxide via synergistic interface interactions of - stacking and hydrogen bonding
Inspired by interfacial interactions of protein matrix and the crystal platelets in nacre, herein, a supertough artificial nacre was produced through constructing the synergistic interface interactions of p-p interaction and hydrogen bonding between graphene oxide (GO) nanosheets and sulfonated styreneethylene/butylene-styrene copolymer synthesized with multifunctional benzene. The resultant GO...
متن کاملRobust bioinspired graphene-based nanocomposites via synergistic toughening of zinc ions and covalent bonding
Robust graphene-based nanocomposites show promising applications in fields of flexible, wearable and intelligent devices. But, it is still a big challenge to construct high performance macroscopic graphene-based nanocomposites for practical application through cost-efficient graphene oxide (GO) nanosheets. Inspired by the hierarchical layered structure and interfacial interactions of nacre, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS applied materials & interfaces
دوره 8 16 شماره
صفحات -
تاریخ انتشار 2016